
The Characterization of Data Intensive Memory

Workloads on Distributed PIM Systems?

Richard C. Murphy, Peter M. Kogge, and Arun Rodrigues

Department of Computer Science and Engineering
University of Notre Dame

frcm,kogge,arodrig6g@cse.nd.edu

Abstract. Processing-In-Memory (PIM) circumvents the von Neumann
bottleneck by combining logic and memory (typically DRAM) on a single
die. This work examines the memory system parameters for constructing
PIM based parallel computers which are capable of meeting the memory
access demands of complex programs that exhibit low reuse and non uni-
form stride accesses. The analysis uses the Data Intensive Systems (DIS)
benchmark suite to examine these demanding memory access patterns.
The characteristics of such applications are discussed in detail. Simula-
tions demonstrate that PIMs are capable of supporting enough data to be
multicomputer nodes. Additionally, the results show that even data in-
tensive code exhibits a large amount of internal spatial locality. A mobile

thread execution model is presented that takes advantage of the tremen-
dous amount of internal bandwidth available on a given PIM node and
the locality exhibited by the application.

1 Introduction and Motivation

Processing-in-Memory (PIM)[14, 13, 4] (also known as Intelligent RAM [21], em-
bedded RAM, or merged logic and memory) systems exploit the tremendous
amounts of memory bandwidth available for intra-chip communication, and
therefore circumvent the von Neumann bottleneck, by placing logic and memory
(typically DRAM) on the same die. This technology allows for the construc-
tion of highly distributed systems, but with a very large latency gap between
high speed local memory macro accesses and remote accesses. The construc-
tion of high performance systems incorporating PIMs must successfully exploit

? An early part of this e�ort was sponsored by the Defense Advanced Research Projects
Agency (DARPA) and Rome Laboratory, Air Force Materiel Command, USAF, un-
der Cooperative Agreement number F30602-98-2-0180 as part of the Data Intensive
Architecture Project under the Data Intensive Program. The U.S. Government is
authorized to reproduce and distribute for Governmental purposes notwithstanding
any copyright annotation thereon.
The views and conclusions contained herein are those of the author and should not

be interpreted as necessarily representing the oÆcial policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
Rome Laboratory, or the U.S. Government.

the bandwidth available for on-chip accesses while simultaneously tolerating very
long remote access latencies. Multi-threading, similar to that used in the Tera[1],
seems the natural method for tolerating remote accesses, however, such a model
does not inherently take advantage of the relatively large amount of quickly ac-
cessed memory available on a PIM node. In fact, the Tera generally requires
about the same amount of persistent state available in the L1 cache of a mod-
ern microprocessor[1], and a typical PIM node is likely to have 3 to 4 orders of
magnitude more memory available.

This paper describes the memory access behavior of several canonical data
intensive applications (that is, applications which exhibit frequent data accesses
in a highly irregular pattern, and low reuse). These applications, which are par-
ticularly diÆcult for most modern architectures to accommodate, represent sci-
enti�c problems of signi�cant interest. Thus, the ability to successfully cope
with their requirement will yield tremendous insight beyond the more simplistic
benchmarks used today.

The characterization of these memory workloads is determined using a single
threaded trace generated from actual program execution. This represents the
�rst step in modeling a multi-threaded system and identifying a simple data-
placement scheme.

This paper is organized as follows: Section 2 describes the benchmarks and
the rational for for choosing the Data Intensive Systems suite. Section 3 provides
an overview of PIM technology and the general assumptions behind the system
simulated. Section 4 enumerates the simulation methodology and describes the
desirable outcome of simulation (that is, the condition of success). Section 5
describes the mechanism for analysis, particularly focusing on the Cumulative
Instruction Probability Density (CIPD), which will indicate the measure of the
degree of success. Section 6 provides the results of experimentation which de-
termine both the size and form of a well constructed working set. Section 7
describes the simulation of a mobile thread model of computation in which a
thread travels throughout the system looking for the data it needs, as well as
the costs and bene�ts of such a model. Finally, Section 8 contains the conclusions
and a description of future work.

Further details on the experimentation described in this paper, as well as a
complete set of results for all the benchmarks can be found in [18].

2 Benchmarks

This work concentrates on the analysis of the Data Intensive Systems (DIS)
benchmark suite[2, 3]. These benchmarks are atypical in that their memory ac-
cess patterns exhibit a low degree of reuse and non-linear stride. Thus the focus
will naturally be on the performance of the memory system over that of the
processing elements. Clearly in the case of PIM the interaction between the de-
mand for data and its supply is the preeminent characteristic under study. Most
benchmark suites, in sharp contrast, are designed to be quickly captured in a
processor's cache so as to measure raw computation power. This is somewhat

misleading since the performance of most modern architectures is determined by
that of the memory system.

Early work focused on the performance of the SPEC95[20] integer and oat-
ing point benchmarks. The results of those experiments tended to be unenlight-
ening as the memory access patterns were both regular and easily accommodated
by even a small PIM (which has signi�cantly more persistent state than modern
caches). Tests in which the data set sizes were increased did not fare much better
in that the benchmarks themselves tend to use data with a high degree of both
spatial and temporal locality.

Signi�cant research was then undertaking using the oo7 database bench-
mark[6] with the underlying implementation by Pedro Diniz at USC's Informa-
tion Sciences Institute, which proved signi�cantly more interesting in that it
uses more irregular data structures. Finally, with the release of the DIS suite,
which includes a data management benchmark, a suÆcient number of distinct
data intensive applications were available as a coherent benchmark to allow for
meaningful comparison amongst complex applications.

Additional experimentation was performed using a simple Molecular Dynam-
ics simulation[12], which is of signi�cant interest given its highly complex mem-
ory access patterns and IBM's Blue Gene project which will use PIM technology
for similar protein folding applications. For reasons of brevity, that experimen-
tation will not be summarized here, but can be found in [18].

The DIS suite is composed of the following benchmarks:

{ Data Management: implements a simpli�ed object-oriented database with
an R-Tree indexing scheme [11, 16]. Three operations are supported: insert,
delete, and query. For the purposes of these experiments, only the query

operation was examined.

{ FFT: is a Three Dimensional Fourier Transform which uses the FFTW
library for optimization. This operation could have been included as the
�rst step in both the Ray Tracing and Method of Moments benchmarks,
however given the code's relatively common use, it is treated separately.
(Both the Ray Trancing and Method of Moments benchmarks take data
already converted into Fourier space.)

{ Method of Moments: represents algorithms which are frequency domain
techniques for computing electro-magnetic scattering from complex objects.
Typical implementations employ direct linear solves, which are highly com-
putation intensive and can only be applied to reasonably low frequency
problems. The faster solvers applied in this benchmark are memory bound
since reuse is extremely low and access patterns exhibit non-uniform stride.
This benchmark is derived from the Boeing implementation of fast iterative
solvers for the Helmholtz equation [8, 10, 9].

{ Image Understanding: attempts to detect and classify objects within a
given image. This implementation requires three phases: morphological �l-
tering, in which a spatial �lter is created and applied to remove background
clutter; determination of the region of interest; and feature extraction.

{ Ray Tracing: is a component of Simulated SAR benchmark, and represents
the computational core. This portion of the program consists of sending rays
from a �xed point and determining where they interact with other objects.

3 PIM Technology and Architecture

Modern processors require that tremendous amounts of data be provided by the
system's memory hierarchy, which, is becoming increasingly diÆcult to supply.
The core of this problem, known as the von Neumann Bottleneck relates to the
separate development of processing and memory technologies, and the di�erent
emphasis placed on each. Processors, built around logic fabrication processes
which emphasize fast switching, generally follow Moore's law, while memories
emphasize high density but relatively low data retrieval rates. The intercon-
nection mechanism between the two is a narrow bus which cannot be greatly
expanded due to the physical limit on the number of available pins and high
capacitance of inter-chip communication.

Recent developments in VLSI technology, such as the trench capacitor created
at IBM, now allow for fabrication facilities which o�er both high performance
logic and high density DRAM on the same die. These PIMs further allow for
the creation of much higher bandwidth interconnection between local memory
macros and logic since it all occurs on chip.

Several proposals exist which attempt to fully utilize the potential of these
fabrication developments. The IRAM project [21] at Berkeley seeks to place
a general purpose core with vector capabilities along with DRAM onto a die
for embedded applications. Cellular phones, PDAs, and other devices requiring
processing power and relatively small amounts of memory could bene�t tremen-
dously from this type of system, even if one only considers the potential advan-
tages in power consumption. Others, such as members of the Galileo group[5] at
the University of Wisconsin see PIM as having tremendous potential in standard
workstations where the on chip memory macros would become all or part of the
memory hierarchy. More recently, the Stanford Smart Memories project[17] be-
gan exploring the construction of single chip systems capable of supporting a
diverse set of system models.

The DIVA project [13] is currently investigating system and chip level im-
plementations for PIM arrays functioning as part of the memory hierarchy in a
standard workstation. Finally, the HTMT[22, 15] project is a multi-institutional
e�ort to construct a machine capable of reaching a petaop or above in which a
large part of the memory hierarchy consists of PIMs being designed by the Notre
Dame PIM group. This portion of the memory hierarchy is a huge, two-level,
multi-threaded array.

Figure 1 show a typical single node PIM layout. In the case of the target
ASAP Architecture[19], a vector processor (capable of operating on 256 bit vec-
tors in 8, 16, or 32 bit chunks) is tightly coupled with a set of memory macros.
For the purposes of simulation, it is assumed that the memory macro provides
2 k-bits of data per operation through a single open row register. The ASAP's

MEMORY MACRO

ROW
DECODER

ROW

PROCESSOR
(Wide Word Vector Unit)

REGISTER FILE (256-bits wide)

SENSE AMPLIFIERS

OPEN ROW REGISTER (2K-bits)

COLUMN DECODER

COLUMN

REQUESTED VALUE (WIDE WORD)INCOMING
ADDRESS

(WORD LINE)

 (BIT LINE)

Fig. 1. Typical PIM Memory Layout

register �le then accesses that data in 256 bit chunks. Thus, while a random
read from memory will cause a DRAM access, a read contained in the current
open row does not incur that penalty (because it is simply a register transfer
operation).

The array of PIMs simulated is assumed to be homogeneous. Furthermore,
for the purposes of this paper, no particular interconnection topology is as-
sume (rather, communication events are merely counted). Experimentation over
various topologies can be found in [18]. In actuality, a PIM array is likely to
be heterogeneous (potentially consisting of PIMs of di�erent types { SRAM
and DRAM { and di�erent sizes), and the interconnection network hierarchical.
Multiple nodes may be present on a chip, facilitating signi�cantly faster on-chip
communications mechanisms. Additionally, since PIM systems may be part of
a larger memory hierarchy, additional non-PIM processing resources or memory
may be available.

PIMs, in our model, communicate through the use of parcels, which are mes-
sages possessing intrinsic meaning directed at named objects. Rather than merely
serving as a repository for data, parcels carry distinct high level commands and
some of the arguments necessary to ful�ll those commands. Low level parcels
(which may be handled entirely by hardware) may contain simple memory re-
quests such as: \access the value X and return it to node K." Higher level parcels
are more complicated and may take the form \resume execution of procedure Y
with the following partially computed result and return the answer to node L."
Thus, it should be assumed that parcels can perform both communication and
computation, and may be invoked by the user, run-time system, or hardware.

4 Simulation Methodology

ANALYSIS ENGINE CODE

DATA REPORTING
CODE

SHADE

STATE OF USER
ANALYZED OBJECTS
(CACHES, PAGED
DATA, ETC.)

INSTRUCTION 1

INSTRUCTION N

INSTRUCTION STREAM

MACHINE STATE
(REGISTER FILE
CONTENTS,
CONDITION CODES,
STATUS OF
BRANCH
INSTRUCTIONS, ETC)

USER WRITTEN ANALYZER

OP CODE, REGISTERS USED,
TARGET (EFFECTIVE ADDRESS),
ANNULED STATUS, ETC.

INSTRUCTION INFORMATION:

MACHINE INFORMATION:
(PRIMARILY STATE)

Fig. 2. Shade Simulations

The principle benchmarking mechanism presented in this paper is the Shade
suite[24] developed by Sun Microsystems. This tool allows for the analysis of
any SPARC binary by providing a simple mechanism for examining the code's
execution instruction by instruction. Figure 2 shows the simulation mechanism.
User written analysis code takes the running instruction stream and current
machine state to track the state of the processing and memory systems for a
PIM array. Of particular interest are memory events, such as opening a new row
or generating an o� chip memory access.

Since the Shade suite traces SPARC instructions, the simulated ISA cor-
responds roughly to that of a typical RISC machine. This obviously does not
represent the vector ASAP ISA, however, this work is primarily concerned with
the performance of the memory system.

Shade does not provide a mechanism for tracing multi-threaded code, though
a package to do so is under development and will be incorporated into future
work. Consequently the instruction streams analyzed here are single threaded.
However, since they are taken from the program's main loop of execution, they
are not atypical.

To allow the simulation to be tractable, input sets were restricted to the
100-500 MB range, as appropriate for the particular benchmark. Additionally,
simulation was limited to a 32-bit address space. Data sets were divided into

three parts: code (as indicated by portions of memory subject to an instruction
fetch), the stack (which grows down from the top of the address space), and the
heap (everything else). For the purposes of data movement, only objects in the
heap were analyzed.

Many of the simulations, though consisting of smaller data sets, were per-
formed with an eye towards very large machines (consisting potentially of a
million or more nodes). Thus, large parcel sizes (for pages, code, state, etc.),
which can be handled by the extremely high bandwidth interconnection net-
works of such a machine, are not considered detrimental to performance. On the
other hand, broadcasts, updating many remote data structures, or overhead data
structures which envelop most of the memory on a given node are considered
detrimental to performance.

Of particular interest is the amount of time a given thread of execution can
continue on a node before an o� node memory access is generated. Thus, the
execution model favors uninterrupted execution for long periods of time.

5 Metrics

There are primarily two metrics which will be presented throughout the rest of
this paper. The �rst, and simplest to understand, is the miss rate. It is, quite
simply, the fraction of accesses which cause a miss over the number of accesses
during the entire program execution. If A represents the total number of accesses
and M represents the total number of misses, the miss rate is merely M

A
. This

is the traditional metric presented when examining the \eÆciency" of caches.
However, since the measure of eÆciency for the purposes of these experiments

is run length between misses (o� node accesses), the more detailed Cumulative

Instruction Probability Density, or CIPD, is also presented. The CIPD is com-
puted by dividing a program's execution up into streams of instructions for
which no miss is generated, given the memory state of the machine at the �rst
instruction in each stream. That is, the �rst instruction encountered which gen-
erates a miss constitutes the beginning of the next stream, which means that
the previous instruction is the end of the preceding stream.

Streams of the same length (in terms of number of instructions) are placed
into buckets. The probability that a randomly selected instruction stream will be
from a given bucket is then computed. If the CIPD is represented by the function
	(L) where L is an instruction length, 	(L) will return the probability that an
instruction stream of length greater than or equal to L will be encountered.
Thus, for any program, 	(0) = 1, and if represents the maximum length of
any instruction stream, 	(+ 1) = 0. Each of the CIPD graphs which follow
represent exactly the function 	(L) for each experiment. 	 can also be used to
determine the probability that an instruction stream of length less than or equal
to L will be generated. This function, called 	�(L) = 1� 	(L).

It should be noted that the graphs are constructed from individual data
points determined during program execution. Since the 	 always begins at 1
and eventually decays to 0, anything to the left of the beginning of the graph

(usually 103 instructions) will rapidly reach 1. Similarly, the \end-points" pre-
sented are not the true end-points (since they should always become 0); rather
they represent the probabilities of the largest instruction streams encountered.
Rather than presenting the entire function, these starting and ending points were
chosen to better represent the graph and include more information.

There is no notion of weight contained within the CIPD, which can be
thought of as \time spent executing." Instruction streams of very long length will
show a relatively low CIPD, but could potentially represent the most signi�cant
percentage of the overall execution time.

6 Working Set Critical Mass

Of primary concern in the construction of PIM systems is the ability of a PIM
to capture a signi�cant working set to perform computation. Modern systems
represent working sets in two ways: as a cache or as a page space.

6.1 Caches

Four cache con�gurations were examined in detail using PIMs of 1, 2, 4, 8, 16 and
32 MB. The con�gurations were a 256-bit block direct mapped cache, a 2k-bit
block direct mapped cache, and 256-bit block 4-way and 8-way set associative
caches. (The choice of block size corresponds to assumptions regarding conve-
nient memory access discussed above.) For the purposes of these experiments,
only heap data was analyzed (that is, code references were ignored under the
assumption that code which is not self modifying can be duplicated across any
number of nodes, and stack references were ignored as the size of the active area
in the stack tends to be relatively small [18]).

Figure 3 show the typical cache result, in this case using the Method of
Moments benchmark. As can be seen from the miss rate, increasing the cache
size does not signi�cantly impact the miss rate above cache sizes of 16 MB.
Further more, for the most e�ective con�gurations (the 256 bit block and 2 k-bit
block direct mapped), it does not e�ect it at all from the initial 1 MB size on.
This indicates that temporal locality is exhausted for these benchmarks with
a relatively small PIM size. (In this regard, the data management benchmark
fared the best, however its best con�gurations did not improve above 4 MB PIM
sizes.) Full simulation details can be found in [18].

Somewhat counter-intuitively, the set associative caches performed worse
than the direct mapped con�gurations. However, given that the caches are so
large (as are the block sizes), many sets in both of the set associative con�g-
urations remained un�lled. The low reuse of many of the benchmarks further
accentuated this outcome.

The increased spatial locality provided by paged memory spaces signi�cantly
improved performance. The next section will demonstrate a 1-2 order of magni-
tude improvement in performance.

0 5 10 15 20 25 30 35

0.2

0.22

0.24

0.26

0.28

Cache Size vs. Miss Rate

Cache Size (MB)

M
is

s
R

at
e

256 Bit Block Direct Mapped
2K Bit Block Direct Mapped
256 Bit Block 4 Way Set Associative
256 Bit Block 8 Way Set Associative

Fig. 3. DIS Method of Moments Cache Size vs. Miss Rate

6.2 Paged Memory

Programmers tend to allocate even pointer-based data in a relatively uniform
fashion[23]. This accounts largely for the improvement in performance demon-
strated by paged memory con�gurations. Of primary concern here is the degree
to which larger pages are e�ective, given that on a PIM with a relatively small
physical address space, pages which are too large may not allow enough windows
into the address space to be e�ective.

Figure 4 from the DIS Data Management shows the miss rate versus the
number of pages on a given node for pages of various sizes (4 KB to 256 KB). The
key result given by this graph is that for all PIM sizes tested (1 MB to 32 MB)
increasing the page size uniformly improved the miss rate. This indicates that in
each case not only was the larger page able to provide additional spatial locality,
but having fewer windows into the overall address space did not adversely a�ect
the miss rate.

Obviously larger page sizes place a greater demand on the system's inter-
connection network during a miss. However, it should be noted that the type
of system under examination is assumed to have a very high bandwidth inter-
connect (with a corresponding high latency for access). Additionally, due to the
enormous number of nodes { potentially O(106) { possible in such a system, it
makes sense to place a greater premium on directory services and the simplicity
of name translation than on page transmission time. Finally, no assumptions

10
0

10
1

10
2

10
3

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

4k

8k

16k
32k

64k

128k256k

Number of Pages

M
is

s
R

at
e

DIS Data Management −− Page Miss Rate −− Data Only

Fig. 4. DIS Data Management Overall Miss Rate

have been made in regard to the location of pages being retrieved (in another
area of physical memory, on disk, in a COMA arrangement, etc.), thus assigning
a \miss penalty" for the purposes of these experiments is largely irrelevant.

Table 1. Working Set CIPD Mean Values (256 KB pages)

PGM 2 MB 4 MB 8 MB 16 MB 32 MB

DM 10K 13.16M 13.16M 13.16M 13.16M

FF 200 300 600 1.03M 1.89M

MoM 5700 9.26M 2.62M 9.62M 9.62M

IU 632K 655K 9.26M 9.26M 9.26M

RAY 117K 202K 1.11M 1.11M 1.11M

Tables 1 and 2 show the mean and median values of the CIPD ((L)) for
each of the benchmarks. They show that relatively small PIMs (4 MB to 8 MB)
are highly e�ective in capturing a working set for most benchmarks. The FFT is
a highly unusual case in that 16 MB PIMs are of particular strength in capturing
the working set. This is not surprising, however, since the matrices involved are
O(15MB) in size.

Table 2. Working Set CIPD Median Values (256 KB pages)

PGM 2 MB 4 MB 8 MB 16 MB 32 MB

DM 2K 20.55M 20.55M 20.55M 20.55M

FF 2K 2K 2K 1.54M 1.72M

MoM 18K 393K 393K 393K 393K

IU 601K 601K 1.53M 1.53M 1.53M

RAY 148K 149K 155K 155K 155K

7 Mobile Threads

Thus far it has been shown that an individual PIM is capable of holding a sig-
ni�cant workings set and that increasing the page size signi�cantly improves run
lengths on a given node. Furthermore, system design thus far has emphasized
not only the long run lengths between remote accesses (due to the relatively
low latency of a local memory access versus a remote memory access), but also
simplicity in tracking the location of data. In extremely large systems, main-
taining a directory of highly fragmented data becomes complex both due to
synchronization and storage requirements[18].

Consequently, it becomes increasingly viable to move the computation in-
stead of the data in a mobile thread environment. This system, similar to Active
Messages[7], extends from the ability of a parcel to invoke computation on a
remote node. Under this model, a thread executes until a remote access is gen-
erated. At that time, the location of the remote names is determined, and the
thread is packaged into a parcel for transmission to the remote node. Upon
receipt, the remote node continues the thread's execution.

There are several potential advantages to moving the computation:

{ Page tables or other data structures managing the translation of names be-
come small.

{ Static data placement signi�cantly reduces the synchronization involved in
updating distributed versions of those structures.

{ The physical location of a given computation need not be tracked at all.
Threads can freely roam the system without causing the update of compli-
cated, distributed data structures. Speci�cally, if various threads communi-
cate through shared memory, they need not know the physical node upon
which the thread with which they are communicating resides, only the loca-
tion of the shared memory.

{ Programming models can emphasize moving to a given node, exhausting the
data present, and moving on. Simple mechanisms for delivering such data
can easily be provided by the runtime system.

{ No round trip communication is necessary since the thread can move to
the data rather than requesting data which must then be returned. This
eliminated one high latency penalty upon each movement.

Naturally, there are potential problems with such an arrangement:

{ Load balancing may be diÆcult, especially if data placement relies upon
highly shared data structures (that is, a given node could become a bottle-
neck if suÆcient computation resources are unavailable).

{ The runtime system must be capable of dealing with threads which have run
amuck.

{ It may be impossible to group data such that related items are together.
(This experimentation, using benchmarks which are among the worst known
in this regard, indicates that this is really not a problem.)

It is impossible to address all of these problems in this paper, particularly
since this experimentation is still in the preliminary phase. Furthermore, the
single threaded model adopted for these experiments is incapable of examining
contention amongst several mobile threads.

The current model does, however, allow for the characterization of memory
access patterns generated by a single mobile thread. Since this single thread
represents the main loop of the program, its memory demands should be no
smaller than those of its children.

Given the potential diÆculties of mobile thread execution, it is likely that
a hybrid model will be adopted. For example, data which is heavily shared but
not often modi�ed could be duplicated amongst multiple nodes. Additionally,
it should be noted that each of the potential problems listed above also occurs
with systems which only move data.

7.1 Execution Model

Figure 5 shows the two potential types of mobile thread movement. In the �rst
form, each time a remote memory access is generated a thread is packaged and
moved to a new node. A slightly more complex model allows for the thread to
communicate with the node upon which it was previously executing in recogni-
tion of the fact that some data from that node is probably still necessary during
the computation. (This data can, in fact, be captured before the thread moves,
which alleviates the reverse communication.)

Data contained on the previous node, if available, is tracked as a \look-
back reference." This represents, ideally, what could be packaged up with the
thread when it is moved so as to facilitate longer computation on the next node
without communication. Of particular interest is the number of unique references
to the previous node. Knowing this allows for the construction of data structures
to e�ectively capture such references, and provides a measure of feasibility for
mobile threads.

7.2 Data Layout

The experiments to be presented here allow for an extremely simplistic data
layout. Heap data is divided into chunks equivalent to a given PIM size, and is
held in place. Experimentation in [18] shows that the size of the active stack and

NODE WHERE MISS OCCURS NODE TO WHICH THREAD MOVES

NODE WHERE MISS OCCURS NODE TO WHICH THREAD MOVES

THREAD

DATA NEEDED
BY THREAD

THREAD

THREAD WITHOUT PACKAGING
NEEDED DATA

THREAD WHICH PACKAGES
NEEDED DATA

THE SIZE OF THIS DATA WHICH MUST BE MOVED
EQUALS THE "LOOKBACK" SIZE.

Fig. 5. Types of Thread Movement

code sections is relatively small (with will over 99% of each being served by in
32 KB of information or less).

The Spartan nature of this data placement tends to yield worst case results. It
allows for no compiler, run-time, or user intervention in the policy for placement.
Data is merely divided according to PIM size and placed accordingly.

7.3 Run Length Experimentation

Figure 6 shows the impact of backwards references on run length and the overall
e�ectiveness of potential mobile thread computation. In this particular case (DIS
Data Management) the results are easiest to understand (and are fairly typical).
Because the data structure being traversed is a tree, the PIM size does not
signi�cantly alter the run-length data. (The index tree is signi�cantly larger
than even the largest PIM studied, therefore in eliminating half of the tree, the
thread is required to go to a di�erent node regardless of PIM size.)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

DIS Data Management CIPD

Run Length

P
ro

ba
bi

lit
y

No Backward References
Backward References

Fig. 6. DIS Data Management Run Length Results (CIPD, 	(L))

Allowing for look-back references increased the maximum run length by ap-
proximately two orders of magnitude. Similarly, it increased the probability of
executing a longer run by nearly an order of magnitude.

Figure 7 shows the most dramatic results. For the Method of Moments code,
the maximum run length improved by over four orders of magnitude. Further-
more, not allowing for look-back references yielded particularly bad results { run
lengths of over 1,000 instructions occurred less than 0:0001% of the time.

The numerous short run lengths in this benchmark can be attributed to the
simplicity of the data placement scheme as related data structures are allocated
with very low locality. (Speci�cally, several big matrices are allocated one after
the other, and therefore reside on separate nodes.)

7.4 Look-back Reference Results

Figures 8 and 9 show the probability density of a unique number of references to
the previous node being made for a given instruction stream. In every run, except
the Image Understanding benchmark, only 10 percent of instruction streams
reference more than 10 unique 32-bit words from the previous node, indicating
that a very small amount of data is needed to augment a thread once it has
moved.

Figure 10 shows the worst case results given by the Image Understanding
benchmark. The IU benchmark tended to thrash between the image it was look-

10
3

10
4

10
−6

10
−5

CIPD Without "lookback" DIS Method of Moments

Run Length

P
ro

ba
bi

lit
y

2, 4, 8, 16, and 32 MB PIM

10
3

10
4

10
5

10
6

10
7

10
−4

10
−3

10
−2

10
−1

CIPD With "lookback" DIS Method of Moments

Run Length

P
ro

ba
bi

lit
y

2 MB

4, 8, 16, 32
MB

Fig. 7. DIS Method of Moments Results (CIPD, 	(L))

ing for and that which it was examining. This problem can be alleviated by
better data placement.

10
0

10
1

10
2

10
3

10
−4

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

Fig. 8. DIS Data Management Look Back Reference Results

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB

8 MB

4, 8, 16 MB (left to right)

Fig. 9. DIS Method of Moments Look back Reference Results

10
4

10
5

10
6

10
−2

10
−1

10
0

Backward Reference Probability Density

Backwards Reference Size (32−bit Words)

P
ro

ba
bi

lit
y

2 MB PIM

Fig. 10. DIS Image Understanding Look back Reference Results

8 Conclusions and Future Work

This paper examined the architectural parameters which e�ect program ex-
ecution on PIM arrays using the Data Intensive Benchmark suite. Because
these benchmarks exhibit complex, non-uniform memory request patterns, un-
derstanding their characteristics provides an ideal test-bed to ush out the ar-
chitectural parameters necessary to take advantage of extremely low latency
on-node memory accesses. Furthermore, by focusing on applications which have
proven themselves diÆcult for typical memory systems to accommodate, this
paper provides a set of \worst (realistic) case" memory access scenarios.

The paramount engineering problem upon which this work centered was the
determination of the physical parameters of the design of the memory system
(particularly how much physical memory a given node would need to sustain
signi�cant computation, and how that memory can be logically organized).While
larger memories generally improved performance, it was shown that a relatively
small PIM (with a 2 to 8 MB memory macro, for example) can sustain signi�cant
computation, and that, in fact, signi�cantly larger PIMs were needed before
another order of magnitude increase in executions between misses occurred.

Surprisingly, the increased potential to exploit spatial locality provided by
large pages provided signi�cant bene�t in all the experimentation. Given that
the benchmarks exhibit highly non-linear stride during memory accesses (due
to pointer chasing or non-uniform matrix access), and each contained very large
data sets, this result, in which fewer windows into the address space are available,

took the experimentation in a di�erent direction. Speci�cally, the number of
windows into the address space on each node was reduced to the minimum (one)
and the computation was allowed to move between nodes.

Generally, even given the simplistic data placement model, this mechanism
proved e�ective, especially when coupled with the ability to \look back" at the
previous node for data which may still be needed. After moving, the amount
of data used on the previous node tended to be quite small (on the order of
hundreds of bytes), implying that it can be e�ectively captured and packaged
before the thread is moved.

Future work in this area centers upon re�ning the mobile thread model. A
simulator capable of tracking multi-threaded versions of the DIS suite is currently
examining the issues of contention, scheduling and traÆc. Furthermore, work to
de�ne the data structures and hardware necessary to e�ectively capture look-
back references and accelerate the packaging, as well as e�orts to de�ne multi-
threading constructs capable of supporting inexpensive thread invocations and
context switches.

References

1. Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan Porter-
�eld, and Burton Smith. The Tera System.

2. Atlantic Aerospace Electronics Corporation. Data-Intensive Systems Benchmark

Suite Analysis and Speci�cation, 1.0 edition, June 1999.

3. Atlantic Aerospace Electronics Corporation. Data Intensive Systems Benchmark

Suite, http://www.aaec.com/projectweb/dis/, July 1999.

4. Jay B. Brockman, Peter M. Kogge, Vincent Freeh, Shannon K. Kuntz, and Thomas
Sterling. Microservers: A New Memory Semantics for Massively Parallel Comput-
ing. In ICS, 1999.

5. Doug Burger. System-Level Implications of Processor-Memory Integration. Pro-

ceedings of the 24th International Symposium on Computer Architecture, June,
1997.

6. Michael J. Carey, David J Dewitt, and Je�ery F. Naughton. The OO7 Benchmark.
In Proceedings of the 1993 ACM-SIGMOD Conference on the Management of Data,
1993.

7. David Culler, Kim Keeton, Cedric Krumbein, Lok Tin Liu, Alan Mainwaring, Rich
Martin, Steve Rodrigues, Kristin Wright, and Chad Yoshikawa. Generic Active
Message Interface Speci�cation. February 1995.

8. B Dembart and E.L. Yip. A 3-d Fast Multipole Method for Electromagnetics with
Multiple Levels, December 1994.

9. M.A. Epton and B Dembart. Low Frequency Multipole Translation for the
Helmholtz Equation, August 1994.

10. M.A. Epton and B Dembart. Multipole Translation Theory for the 3-d Laplace and
Helmholtz Equations. SIAM Journal of Scienti�c Computing, 16(4), July 1995.

11. Guttman. R-Trees: a Dynamic Index Structure for Spatial Searching. In Proceed-

ings of ACM SIGMOID, June 1984.

12. J. M. Haile. Molecular Dynamics Simulation : Elementary Methods. John Wiley
& Sons, 1997.

13. Mary Hall, Peter Kogge, Je� Koller, Pedro Diniz, Jacqueline Chame, Je� Draper,
Je� LaCoss, John Granacki, Apoorv Srivastava, William Athas, Jay Brockman,
Vincent Freeh, Joonseok Park, and Jaewook Shin. Mapping Irregular Applications
to DIVA, A PIM-based Data-Intensive Architecture. In Supercomputing, Portland,
OR, November 1999.

14. Peter M. Kogge, Jay B. Brockman, and Vincent Freeh. Processing-In-Memory
Based Systems: Performance Evaluation Considerations. In Workshop on Per-

formance Analysis and its Impact on Design held in conjunction with ISCA,

Barcelona, Spain, June 27-28, 1998.
15. Peter M. Kogge, Jay B. Brockman, and Vincent W. Freeh. PIM Architectures to

Support Petaops Level Computation in the HTMT Machine. In 3rd International

Workshop on Innovative Architectures, Maui High Performance Computer Center,

Maui, HI, November 1-3, 1999.
16. Banks Kornacker. High-Concurrency Locking in R-Tree. In Proceedings of 21st

International Conference on Very Large Data Bases, September 1995.
17. K. Mai, T. Paaske, N. Jayasena, R. Ho, W. Dally, and M. Horowitz. Smart mem-

ories: A modular recon�gurable architecture. ISCA, June 2000.
18. Richard C. Murphy. Design Parameters for Distributed PIM Memory Thesis. MS

CSE Thesis, University of Notre Dame, April 2000.
19. Notre Dame PIM Development Group. ASAP Principles of Operation, February

2000.
20. SPEC Open Systems Steering Committee. SPEC Run and Reporting Rules for

CPU95 Suites. September 11, 1994.
21. David Patterson, Thomans Anderson, Neal Cardwell, Richard Fromm, Kimberly

Keeton, Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case for
Intelligent DRAM: IRAM. IEEE Micro, April, 1997.

22. T. Sterling and L. Bergman. A design analysis of a hybrid technology multithreaded
architecture for petaops scale computation. In International Conference on Su-

percomputing, Rhodes, Greece, June 20-25, 1999.
23. Artour Stoutchinin, Jos�e Nelson Amaral, Guang R. Gao, Jim Dehnert, and Suneel

Jain. Automatic Prefetching of Induction Pointers for Software Pipelining. CAPSL
Technical Memo, University of Deleware, November 1999.

24. Sun Microsystems. Introduction to Shade, June 1997.

